TOL STAPM -

TICOMIT- 91

HOMBWORE CF DR, WIHHETM GERTICH ON

RUSSTAN SYSTEUS

The attoched homework by Dr. Wilhelm GFificch of the German Amy Sigint Service (NAAST. 1) was written in November, 1945 at the request of TICOM and received from H.Q., A.S.A., Europe under reference ASA-10/ENC/1ab, dated 17th January, 1946. It describes his work on Russian systems in the cryptanalytic seation of NAASM 1.
2. The preliminary interrogation report was issued as TICOM/I-156.

1ICOM

5th March, 194.6.
No, of pages: 12.
copy No, 16
DISTRIBUTION
British:

1. D.D. 3.
2. H.C.G.
3. D. Do (M.W. $)$
4. D.D. (A.S.)
5. C.C.R.
6. Car. Tandy
7. Major liorgan
U.S.
```
8-11. Op-20-G (4) (via Cdr. Manson)
    12. G-2 (via I.t. Col. Hilles)
13-15. A.S.A. (4) (via Capto Collins)
    17. Director, A.S.A. Europe
    13. Col. Kurkel, USAAFE
```


STCOM

Adcitional.
28w30. Mir. Pritchard (3)
22. Car. Manson
23. Capt. Collins

24-27. Ticom Files (4)

Expemience in Crycumartic Section of NHST 1
By Dn. Will:elm Gerlioh
2/F systems
These were used by subordinate units of the Red amy up to the lost stoges of the rar, but not to the same patent as in the carly jears. They cauld always be deayphered if sufticient text was available. Usually only a few lines were sufficient to find the key, particularly in the case of letter

table 1939) con be taken as a fundanental system. Letters and phrases were inserted in a certain order in a 10×10 square:

1	3	4	5	6	7	8	9	0
0	A.		k		Φ	я		
1	b		J		X	(,)		
2	B		M		L	(-)		
3	Γ		H		4	(1)		
4	,		0		[1]	(?)		
5	\pm		ITI		II	(:)		
6	洨		P		引	(.)		
7	3		C		E			
8	VI		T		ϑ			
9	\#		y		10			

TOP SECREEP "T"

The choroteristio fenture of wine IT 39 was that tine letters had only one equivalent and wexe awraged in three oclums. The remaining squaces were filled by wris such as "radiograma (wireless message)" eto. To ascertain whether letwers or words were to be sent, the two inaioators " читaйте ryery (read letters)" and "читenme cлога (read words)" were required. Thus letter texts could in this table only begin w. th three different B positions of the cypher elements. The element in fant of this had to be " yyruatio gymisu ", the element following these groups " читaйтe слола ". Whatever the necypherment might be the same letters would always ocour in the some row and column. E.g. A-K- $\Phi-9$ were always in the sane line.

Example:

Nethod of solution: 1.) finc the indiaators
2) finci frequenoy of each cypher element and structure o? letter text.

The frequency of each letter had been ascertained from a large number of clear texts, and a long text corresponded with this. In tne case of shorter texts the frequenoy peaks were of ten ocnsiderably displaced, so that one hrd only the word structure as storting point of attack.

The ET 30 was no conger used in the latter years. ibout 1941 the Russians introduced other word tables and these could always be reconstructed as far as the letters were concemed. Reconstruction of the arrangement of words was very difficult and success was limited.

Practionlly all the new word tables of the Red namy had more than one equivalent for each letter. The first to appear were $4-6$ new word tables, e.g. FT 456 etc.; however I can no longer remember them.

	1.	2	3	4	5	6	-	\therefore	9	\varnothing
1	Φ	A	π	\varnothing	9	12	2	E	6	E
2	0	X	Y	3	b	6	P	3	\#	III
3	9	ϕ	I'	U	8	2	0	5	1	II
4	VI	(.)	III	8	P	B	y	7	A	EI
5	II	10	b	A	Φ	0		b	H	5.
6	H	B	9	9	C	7	Γ	10	3	P
7	II	U	aii	0	K	Y. ${ }_{\text {c. }}$	x	T	d	(,)
8	K	E	y	3	4	, 4	1	H	5	π
9	T	Y	In	if	(,)	\bigcirc	K	(0)	Д	3
\emptyset	E	II	II	J	3	4	III	10	J	M

Such a table is given as an exaraple. This use of several equivalents completely obscured the frequency peaks, considerably increasing the difficullty of breaking. is 'rowever the Russian encyphewers had dirficulty in finding the letters, they very often used the same square habitually, and thus we were able as a. result of their laziness to discem structure and frequency. New oyphers which were solved were sent (for recugnition) as "new cyphers" to the General of Sigint for passing on to the Sigint stations of the other a.may groups; they automatically sent us cyphers solvzd or partly solved by oriher sigint stations,

We possessed about 500 solved 2/F cyphers, of which one or onother was always appearing. But as already mentioned, alnost all 2/F systems
could be solved and presented no appreciable difficulty to the cryptonalyst.
One or two men were sufficient at Sigint Station 1 to oope with current decyphermen of $2 / \mathrm{F}$ messazes, especinlly os the greater part of them were already being solved in the companies. Solution was made easier when $P /$ I was interspersed. This also applies to all systems and was constantly ocourring.

In the last stages 2/F systems only oocurred whers the units were engaged in fighting; thus it is to be expected thet they are still being used in the Red Army even if they are not oppearing at the moment.

The 3/F System.
This is a further development as compared with the $2 / F$ system, Here 1000 oypher elements are available, whereas in the $2 / F$ systeri there are cnly 100. Either up to 1000 words may be inserted, or else $2-3$ or even more figure groups :my be used for each P / L element, i.e. .i.tre than one equivalent. For instance, in a small code of 5 pages the pages might be numbered as follows:

Page	1	2	3	4	5	
I	$2 / 4$	$6 / 7$	$1 / 3$	$5 / 0$	$9 / 8$)
II	$7 / 4$	$6 / 3$	$1 / 9$	$8 / 2$	$0 / 5$)ncypher-

Thus, when reading off one cypher element the page number is taken as position h of
the cypher element; as two figures are available for each page (e.g. for
enoypherment I $2 / 4-6 / 7-1 / 3-5 / 0-9 / 8$), each P / L element may be
expressed by 2 cypher elements. Each page is divided into lines, which

TICOM/I-191

again are numberd when frow the dopusitions are read. For these a strip which may be changed is rixed at the edge of each page bearing the figures troin 00 to 99. Thus 100 lines may be numbered by it. is however the Russion $3 / F$ cules never have so many word equivalents as to require all the figures the use of more than one equivalent is possible in this case also. Such o strip will cocordingly then have a nuaker of corsecutive figures for each pege uf the code, each group formirg a socalled "block" [Band]; thus we also speak of "block" equivalents. If now each prge ras 25 lines, the blocks inay be 4 figures long $(100 / 4=25)$, so that by means of the blocks alone each word may be expressed by 4 different IC positions. In addition to this there are the double equivalents on each page, so eight oypher equivalents are available for each word. A marginal strip of this type in blocks of 4 figgures each would then appear sonething like this:-

$02-06$	
$90-01$	
$11-14$	
$\frac{7-10}{23-26}$	
$43-46$	
$31-34$	
$\frac{51-54}{15-13}$	
$\frac{A P M T 1}{} 9-42$	
$27-30$	
$\frac{17-50}{19-22}$	
$35-38$	

These strips may be exchanged and thus the encypherment changed, Similarly the page numbering may be altered.

Thus after the indicator "read words" the following cypher elenents could all stand for the word APMYG (army), if page 1 has the num'ering 2/4: 215-216-217-218-415-4;16-417-413.
If however those groups followed the indicator "read letters" they would mean "A" and after the indicator "read figures" they mean "15"。

The codes are usually arranged in "partially alphabetic" order, i.e. alphabetical order is retained, within each letter group, but the letters themselves are not in alphabetical order
 mentioned the initial letters of the words are ussd for letter text, single letters not being allotted positions. The figures are dotted about in the text groups.

If we wish to investigat? how messages enoyphered in this way may be broken, we must begin with the preliminary work necessaxy.

Pirst of all material which is suspected to be on the same cypher [Verschlüsselung] and which nust be of considerable amount, is collected together. Statistics are then made of this material on a large 10×10 square. We pay attention to the predominance of oypher elements in certain squares, and to the various frequencies and by these means con weed out messages which probably do not belong to this recyphement [tiberschlüsselung].

In the light of these statistics we now exarnine the messages, and ompare the manner in which ooman oypher elements ocour in the messages and in what positions. In this way repeats are ascertained. However, we must compare not only identical figures but cilso similar ones as we wish first of all to reconstruct the key strip blocks. Here the carelessness of the enoypherer is of assistance, for he dies not use the whole block but more irequently the first and last figures of it, as they have been entered direct in the key. When the bands have been ascertained.
by piecing together the various ompher elenents, hore oud more repeats cone to light and in the ocse of lotter text we can gradually recognise word structure, enge repetition the same cypher element, at definite intervals. This wrk is as f.t were clearing away the poly equivalence from the messages. It shows as follows in our frequency counts. If the pages of the code have nore than one number each, we can, after having entered the is position in rows, combine these ruws; we than speak of an "overlap". Thus if in a 10×10 square the cypher elenents have been entered according to page encyphement I (see page c) the rows con then be combineds

Having investigated the messages for repeats and word structure, we proceed to try to break in at these poinnts.

If passages showing structure occur at the beginning or end of a message, they may be assuned tho be addresses or signatures, ioe. proper names. These are of ten also given in P / L nessages of ten also given in P / L. nes
fron the network concerned but we also try to learn names from the network concerned from the evaluation section.

Another point of attack in letter text are tre placo names which may be suspected in messages with cowordinates. Offourse one must previously have ascercained in which area the traffic lies.

Soon we shall also be able to distinguish figlure text. This will be show by freguent double cr triple recurrences. If we can then tentativel.y identify the figures with our own or enemy units we shali endeavour to establish them, as even to recover the figures only of a code is of great value, enabling us to establish newly appearing units in a:
definite area. Therefore all. passages with suspected figure text, are written out and examined for structure. If two and three place groups for enemy units ir this area oceur and have the same figures, reconstruction is possible. The er.cyphered date and the time of day at the beginning of the message are also of use. On one occasion I reconstructed the figures of a code by means of the date and the enumeration of calibres of German A.A.

At the same time efforts are made to ascertain the

 indioators "read words", "read figures" and "read letters" and also the punctuation marks (.), (,), (-) etc. By these means one can fix the beginning and ending of sentences which is naturally a great help.Simultaneously the reconstruction of the words is
proceeding and therewith penetration of the oodo text. This work too must be done in olose collaboration with the evaluation from whom the cryptanalyst may leam the type of network, whether artillery code or Ic aode etc.

Attention is directed primarily to the message beginning and end, for here date, address and signature are probably to be found. If for example a aypher element alinost always occurs only at the beginning or end of a message it inay be suspected to be a rank or appointment; e.g. HAY. IITAFA (= chief of staff). Also one may look for units such as ДИВИЗИЯ (division), ПОЛК (regiment), APMUG etc. I once solved a Ic-code from the beginning by ossunning that a Ic message would probak? y begin with IPOTИВНй (the enemy), this proving correat.

The cypher elements following suspected figure text are also examined; they may again be unit designations, arms, "P/W's"; the insertion of such words is relatively easy once the figure code has been artially recovered. पACOB (time) also frequently follows figures.

Another point of attack is the P/L passages frequently inserted by the Russians in $3 / \mathrm{F}$ messages. They often gave word and names not contained in the code in $P / L_{\text {. . It was then }}$ easy to recover the cypher eleinents imediately preceeding and following. All this work is naturally only possible by constantly compering messages with each other. An experier.ced cryptanalyst must have the irequent cypher elements in his head and always be ready to accept new hypotheses and reject old ones.

A special cless of messages is those with grid references. Heving ascertained from the evaluation whether they concern the line of the front or rear areas, in which case they might be locaiions of $H Q$'s or similar points, or whether they are references in front of the line which might be targets for attack, we can then attermpt to insert identifications from the map. One woul. d expect points of the compass and also geographical terms such as "fores+", "coppice", "strip", "area" and rililtary terms suoh as "sector" etc., to oocur.

Work on short messages will be desoribed for the $\mathbb{I}-3$ system, and can be used here also.

Words which have been found nust then correspond as far as possible with the position of the letters ascertained in the 10×10 square. If for exomple a oypher element has been identified as "COOEMИTE" and its neighbours in the square are elements beginning
 (report) 'but "ДОЛОЖИTE" (submit).
$3 / \mathrm{F}$ systens were alwoys solved when surficient inaterial on one encyphement was available.

TOP SECRET "U"
TICOM/I-191

4/F systems

These were used from corps to army and from army to army group. For this reason they were of especial importance and great vaiue was attached to their solution. I can no longer remember these codes in detail. I know that I have worked on the $\mathrm{R} 4 \pi \mathrm{C} 1800$ but no longer have any clear idea of it. I will therefore as before record my experience in the hope that it may be of some use.

Beforè one can proceed to solve a code, one must rijrst aim at obtaining ε large amount of similar materjal, e.g. messages on the same recypherment. A lrrge anount of material is therefore absolutely necessary, and the majority of unsolved $4 / F$ codes were abondoned because o^{a} an insufficient numbè of messages. A more irequent change of recypherment would have made decypherment impossible.

This similar material was then subjectod to erequency counte. In doing this similar cypher elements could be picked out and important repeats established, and in certain circumstances one could find the first evidences of word structure in this way. The $4 / F$ codes had almost without exception block numbering, in tre $B C$ positions or in the $A B$ and BC positions. This block numbering or poly-equivalence could be ascertained by means of the repeats. Thereby the "blocks" were duscovered and when these had been only partiolly recovered ono could find further repeats and word structure, in the case of letter text.

One then tried to break into this letter text, but naturally one could not take advantage of common words such as НЕМমДЛFHHO or OBCPOHA with their well-know structure, for these words were given their own cypher elements in the code. It was very cominon for the structure of the ends of messages to be worked on, as here or at the beginning of the message one expected to find proper names. These were frequently sent in E / I. and were then listed to find out at which units or HQ^{\prime} s the persons mentioned wre. The evaluation section of ten supplied us wi th nanes.

One also tried to insert place names, particularly in the case of transport or supply codes. He possessed for example several messages on a traffic established by T.A. as a supply traffic, in which trucl numbers were given in clear. Between these truck numbers were oypher el.ements with obvious structure. As the arta in which the cude was used was also known, and the cypher passages vere assumed to be place names, possible nomes e.g. those lying on the supply routes were sought. By inserting them a tentative letter text was obtained, the likelihood of which could then be checked by other messages. Another point of attack, again with numbers, were messages in which numbers of our own or of enemy form tions were mentioned. Even if the rest oi the oode had not yet been solved, the insertion of numbers of ten gave useful results, when previously unknow onemy units could be established thereby.

TOP SECRET "U" -9m TICOM/I-191

We should mention however that in the codes for individual units (e.g. 26 th rifle division $=3409$) separate oypher elements were provided; but owing to careless encyphernent the various units were often sent with every simple number enoyphered [in full]. One could then break in. And when mentioning enerny units the encyphorer was raturally forced to encypher each number separately. In one code I once recovered the nambers by means of a message in whioh the number and calibre of guns in German h. H . units were given,

In connection with letter text, the Russian often spelt with the first two letters of the words occurring in the code. For cxample if he wished to send FBUCC he could take after the indicator "read letters":

$$
\begin{aligned}
& H E \text { - from HEMEДЛЕННО, } \\
& \text { ИC - from ИCMOЛНЕНИЕ, and so on. }
\end{aligned}
$$

The word text was recovered sinultaneously with the letter and figure text, each depending on the other. It was important to solve the messages as completely as possible. Recovery of words was much easier when in addition to the indicotors the punctuation signs had been recovered, and when one knew which oypher eiements represented figures, or one had perhaps already recovered the letter text.

Here again beginning and end were scrutinised, as containing address or signature. A cypher element occurring almost always in these two positions night be a rand or appointment, e.g. HAY. ITPABA (ohief of staff) or HAY OIEP TIAEJA (chief of operational section).

Following figure text units, arms, P / W 's etc., could be guessed. Here one naturally oonnot give a theoretical "unfailing" method of breaking. What is correct in one instance may be false in another. Thorough knowledge of the material and instinot are the most important factors.

It is usual to obtain the first word identifioations from the short messages of 2 or 3 oypher elements. These are routine orders from a superior authomity:

```
    ДOJOKИTE OБСТTAHOBKY
CPOYHO ДOJOKVTE OBCTAHOBKY = report situation,
```

The short message from the subordinate unit might then be identified as: OBCDAHOBKA БEЗ WЗМЕНЕНИЙ
= situation unchanged.
These identifioations were then inserted in all messages where they occurred, affording the first steps towards solution; they could of ten be added to if favourable passages of F / L were interspersed. Messages with gria refacerocs, giving the front line or HQ locations, are also useful. Here olose collaboration with the evaluation section is absolutely necessary. With luck words such as "river", "wood", prepositions and points of the compass may be inserted.

If one has got so far, the code may be considered partiolly broken. Given sufficient messages new identifications will always becorne evident.

TOP SECRET "U"

Transposition systele

These were comparatively rarely used by the Russians, who were usually content with substitution systerns, e.g. substitution alphabets and codes.
I. do not know whether such transposition systems were solved at Sigint Stn. 1, however I know that transposition messages were being read, that "stencils" etc., were used; however I think they were solved at General of Sigint's. The folloring remarks are not based on my personal experience but on the course which I attended at General of Sigint's from October, 1944 - end of December, 1944. The same importance was not attached there to these types of encypherment for Russian as there was in the course for English which ran about the sane tiine, as we were told even then that the Russians rarely used these sirsteins, but that they were the pravailing systems in the armies of the Western powers.

The first step is to deteraine the key longth, e.g. the number of letters which are transposed among themselves. This was done by lining up the messages; they were written out in long lines under each other and the lowest inessage shifted one place at a time, the number of times "clicks" were obtained being counted. With sufficient material the key length must reveal itself. Follerith machines were available for this laborious work of comparison. The shorter the key length the easier to find. Having ascertained it, the message was written out in a cage of this length. If in the following example the length had been found to be 16 by lining up a large number of messeges, the message was written out in a cage of 16 and the lines then retransposed until with luck and patience a break in was found. For this figure text, nomes, message beginining and endings etc., were helpful as before. Thus looking at the message given in Appendix "A" the figures in the first group attract our attention. Being at the beginning they can be assumed to be a date. If we know that the message was sent on $13 / 12 / 44$, we can tentatively insert the date. This leaves the elements π, Γ, $\mathrm{H}, \mathrm{K}, \mathrm{B},(0)$ over in the first line. It is fairly easy to reconstruct the message beginning as follows: "ДHЯ 13 (.) 12 (.) 1944 I (0)"and the message is thus solved, as with the help of the second line the key is quickly arrived at: $3,8,10,16,6,12,13$, $15,1,7,9,14,2,4,5,11$. The solved message will then read:


```
плен - немедкий - сержант - раздедывателвлого -
отдела . Я -- его - сейчас - отослал - с двумя
- солдатами - к - пrаяу - дививии • Против-
ник потерял - 6- оФиверод - 37- солдат,
1 - противотанковое - орудие - 2 - коро -
๕очки , 5 - пулеметод - и - 30 - ружей .
```

Начальник - щтаба полка Попов

Tronslation: "on 13/12/4 a.t 07 hours a German sergeant of the recce detachnent was taken prisoner. I sent him to div. HQ at once with 2 soldiers. The enemy lost 6 officers, 37 soldiers, $1 \mathrm{~A} / \mathrm{T}$ gun, 2 tanks, 5 mag g and 30 rifles. Chief of Regt. Staff Popoff".

The transposition key was obtained fron a square $+\times 4(=16)$ with a stencil of the form show, which was successively rotatod 90° clockwise, the figumes being read from left to right and top to bottom.

In conclusjon I ropeat that I have had no practical oxperience of transposition systens at Sigint S in. 1, but have based the above description on the cryptanalysis course. I will therefore give a short description, to show what training a cryptanalyst was nowrally given.

Cryptinalysis course

In August $194+$ an examining board arrived at the Russian interpreters' company and gave the higher olasses in the interpreters' training school a series of intelligence tests, Russian word puzzles and numerical puzzles vere set, these being successfully solved by 12 out of the 150 - 200 persons tested. Thesc were sent at the beginning of October to Jüterbog to the so-colled cryptanalysis course. Oberfunker Wein, sometime lecturer in philosophy at Berlin University, conducted the course under the supervision of Oberinsp. Kiohn.

We begon with simple substitution in Ferman and in general most systems were first treated in German and then in Russian. Then followed in logical sequence:
substitution with more than one equivalent, substitution with alternative significations [mehrdentig]
(indicators,
syllabic substitution,
P.T. 39,
the othor substitutions in 10×10 tables introduced by
the Ressians during 194/4.2,
3/F codes, 4/F codes, columar substitution, periodic substitution [Springoäsaren], introduction to transposition sySteras.

The course was based in part on actual Russian messages but these, and also the systems, were out of date, so that though the course afforded the groundwork, one had no sprortunity until arriving at Sigint Stn. 1 of beconing faniliar with the more up-todate material. Obvisusly as one requires a large amount of message material in the case of actual codes, the big codes were not illustrated in this woy by practical examples during the course, although in practice the inajority of cryptonalysts were working on such $4 / \sqrt{F}$ codes.

> Dr. Wilheln Gerlich.
[Trans: A.C.J.] ${ }^{\frac{1}{2}}$

ВА－А ЕЙП－СーІЛ КЕЕН ЕИМН З
EAT－PДAH OJEA ．OTЛ ДБЯГ OE－H AT－O
CCCE－ГJE ЙOЧO ЯЛAД AД－J C－TB УOMC

OИT－OEIP OЛФЕ ИРB－6І－Я АーーП РСТЗ
， 700 ЈИД－О－ТО РТВИ ОВУA НЕКО РЧДК
K2OИ BE，KOO－TИ5－EJO－BHOE M－EV
АВ－Н ИЕЧР АХКЙ • ЛНーП ОБК四 ATBA
ППОА

The message is written out in the key length：

－1		3	4	5	6	7	8	9						14	1		16	Number of column
－	Y	4	г	－	3	1	H	9	я	A	－		1	4	2		1	
II	ת	0	－－	B	c	0	7	II	4	－	－		is	a	－		a	
e	й	II	－	c	－	II	π	\ldots	e	0	H		e	и	M		H	
3	H	p	B	a	T	B	\varkappa	e	a	T	－		p	д	a		H	
0	I	e	a	－	\bigcirc	T	π	д	b	я	Γ	0	－	e	－		H	
a	T	－	\bigcirc	c	c	c	e	－	r	π	e		й	－	Y		\bigcirc	
я	π	a	д	a	д	－	J	c	－	T	3	Y	y	－	M		c	
a	д	a	U	B	K	σ	M	y	и	и	－	II	II	－	T		－	
и	K	3	－	II	II	B	и	H	ni	－	p		\bigcirc	II	T		－	
\bigcirc	e	T	p	\bigcirc	π	¢	e	ir	p	B	－		6	Ii	－		9	
a	－	－	II	p	c	T	3	，	7	\bigcirc	\bigcirc		π	1	д		－	
0	－	T	0	p	T	B	II	\bigcirc	B	Y	a		H	e	K		\bigcirc	
p	Y	A	K	K1	2	\bigcirc	II	σ	e	，	－		K	－	\bigcirc		－	
T	И1	5	－	3	π	\bigcirc	－	3	п	C	e		M	－	e		y	
a	σ	－	H	K	e	Y	p	a	Y	E	й	。	－	π	H		2π	
π	\bigcirc	－	I	\bigcirc	σ	E	III	a	T	B	a	Π	п	n	\bigcirc		a	

